Recovering Boundary Shape and Conductivity in Electrical Impedance Tomography

نویسندگان

  • Ville Kolehmainen
  • Matti Lassas
  • Samuli Siltanen
  • S. SILTANEN
چکیده

Electrical impedance tomography (EIT) aims to reconstruct the electric conductivity inside a physical body from current-to-voltage measurements at the boundary of the body. In practical EIT one often lacks exact knowledge of the domain boundary, and inaccurate modeling of the boundary causes artifacts in the reconstructions. A novel method is presented for recovering the boundary shape and an isotropic conductivity from EIT data. The first step is to determine the minimally anisotropic conductivity in a model domain reproducing the measured EIT data. Second, a Beltrami equation is solved, providing shape-deforming reconstruction. The algorithm is applied to simulated noisy data from a realistic electrode model, demonstrating that approximate recovery of the boundary shape and conductivity is feasible.

منابع مشابه

Recovering from an Inaccurately Known Measurement Configuration via Polynomial Collocation in Electrical Impedance Tomography

The objective of electrical impedance tomography is to reconstruct the internal conductivity of a physical body based on measurements of current and potential at a finite number of electrodes attached to its boundary. Although the conductivity is the quantity of main interest in impedance tomography, a real-world measurement configuration includes other unknown parameters as well: the informati...

متن کامل

Reconstruction of Domain Boundary and Conductivity in Electrical Impedance Tomography Using the Approximation Error Approach

Electrical impedance tomography (EIT) is a highly unstable problem with respect to measurement and modeling errors. With clinical measurements, knowledge about the body shape is usually uncertain. Since the use of an incorrect model domain in the measurement model is bound to lead to severe estimation errors, one possibility is to estimate both the conductivity and parametrization of the domain...

متن کامل

Electrical impedance tomography

We review theoretical and numerical studies of the inverse problem of electrical impedance tomography which seeks the electrical conductivity and permittivity inside a body, given simultaneous measurements of electrical currents and potentials at the boundary. (Some figures in this article are in colour only in the electronic version)

متن کامل

Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.

Cross-sectional imaging of an electrical conductivity distribution inside the human body has been an active research goal in impedance imaging. By injecting current into an electrically conducting object through surface electrodes, we induce current density and voltage distributions. Based on the fact that these are determined by the conductivity distribution as well as the geometry of the obje...

متن کامل

Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011